

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY PUTTUR (AUTONOMOUS) Siddharth Nagar Nagaragan Dagd 517592

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Analog electronics circuits(19EC0446) Year & Sem: II-B.Tech& II-Sem **Course & Branch**: B.Tech EEE **Regulation:** R19

UNIT –I FEEDBACK AMPLIFIERS

1	a) Illustrate the basic concept of Feedback amplifier with suitable block diagram	[L2][CO1]	[6M]
	b) List the characteristics of negative feedback amplifiers.	[L1][C01]	[6M]
2	a) Explain in detail about basic Amplifiers used in Feedback amplifiers.	[L2][CO2]	[6M]
	b) Interpret Feedback amplifier topologies with necessary diagram.	[L2][CO2]	[6M]
3	a) Prove that bandwidth of an amplifier can be extended by using negative	[L5][CO3]	[6M]
	feedback amplifier?b) An amplifier has voltage gain with feedback of 100. If the gain without feedback	[L4][CO3]	[6M]
	changes by 20% and the gain with feedback should not vary more than 2%,		
	determine the value of open-loop gain, A and feedback ratio, β .		
4	Derive the expressions of Gain, input and output resistances for a VoltageShuntFBA.	[L2][CO3]	[12M]
5	Derive the expressions of Gain, input and output resistances for a VoltageSeries	[L2][CO3]	[12M]
	FBA.		
6	a) Determine the input and output resistances of Current Shuntfeedbackamplifier.	[L2][CO1]	[6M]
	b) An amplifier has midband voltage gain of 1000 with $f_L=50Hz$, $f_h=50khz$, if 5%	[L4][CO3]	[6M]
	of feedback is applied then calculate f_{L} , f_h with feedback		
7	Determine the voltage gain ,input and output impedance with feedback for voltage	[L4][CO3]	[12M]
	series having A=-100, R_i =10kohm, R_o =10kohm for feedback of i) β =-0.1 ii) β =-0.5		
8	a) Compare and Contrast the various types of feedback amplifiers.	[L2][CO1]	[6M]
	b) an amplifier has open lop gain 1000 and feedback ration 0.04if the open lop gain	[L4][CO3]	[6M]
	changes by 10% due to temperature find the percentage change in gain of the amplifier		
	feedback	11.11.00.13	100
9	a)compare positive feedback and negative feedback amplifiers	[L1][C01]	[6M]
	b) Show that negative feedback reduces gain of an Amplifier.	[L1][CO1]	[6M]
10	Derive the expressions of Gain, input and output resistances for a current Series	[L2][CO3]	[12M]
	FBA.]

R19

UNIT –II OSCILLATORS

1	a) Illustrate the condition for oscillation with suitable diagram.	[L2][CO1]	[6M]
	b) Interpret the various types of oscillators.	[L1][CO1]	[6M]
2	a Construct RC phase shift oscillator using BJT with necessary diagram and derive	[L2][CO2]	[6M]
	its expression for frequency of oscillations.		[6M]
	b Determine the frequency of oscillations when a RC phase shift oscillator has	[L5][CO2]	
	R=100 k Ω , C=0.01 μ F and R _C = 2.2 K Ω .		
3	a) Determine the condition for sustained oscillations for an RC phase shift	[L5][CO3]	[6M]
	Oscillator with necessary circuit diagrams.		[6M]
	b) Design a RC phase shift oscillator to generate 5 KHz sine wave with 20		
	V peak to peak amplitude. Draw the designed circuit. Assume $h_{fe} =$	[L3][C04]	
	150.		
4	a) Explain the working principle of Wein-bridge oscillator using BJT and derive	[L2][CO5]	[6M]
	the expression for frequency of oscillations.		[6M]
	b) In a Wein-bridge oscillator, if the value of R is 100 K Ω , and frequency of	[L2][CO4]	
	oscillation is 10 KHz, Examine the value of capacitor C.		
5	Analyze an LC Oscillator with necessary equation	[L4][CO6]	[12M]
6		[L2][CO3]	[12M]
	oscillations and condition for sustained oscillations.		
7		[L2][CO3]	[6M]
	of oscillations.		
	b) In a transistorized Hartley oscillator, the two inductances are 2 mH and 20 μ H	[L1][CO4]	[6M]
	while the frequency is to be changed from 950 KHz to 2050 KHz. Calculate		
	the range over which the capacitor is to be varied.		
8		[L2][CO2]	[6M]
	expression for frequency of oscillations.	II 21[CO 4]	
	$O_1 = 100 \text{ pr}$ and $O_2 = 7000 \text{ pr}$. The	[L3][CO4]	[6M]
	inductance is variable. Determine the range of inductance values, if the		
	frequency of oscillation is to vary between 950 KHz to 2050 KHz.		
9		[L1][CO6]	[12M]
	oscillator with suitable equation.		
10		[L2][CO2]	[6M]
		[L3][CO4]	[6M]
	oscillationis 10kHz, Examine the value of inductor.		

R19

UNIT –III OPERATIONAL AMPLIFIER

1	a) Draw the various functional blocks of an operational amplifier IC. Explain	[L2][CO2]	[6M]
	each block.b). Draw the equivalent circuit diagram of Op amp and derive the expression for gain of inverting amplifier.	[L2][CO2]	[6M]
2	a). What is level translator? Explain the necessity of level translator stage in	[L1][CO1]	[6M]
	cascading differential amplifiers. b). Compare different configurations of differential amplifier.	[L2][C01]	[6M]
3	a) Discuss the electrical characteristics of an OP-AMP in detail.	[L1][CO1]	[6M]
	b). Explain the term slew rate and write the importance in op-amp circuits?	[L2][CO3]	[6M]
4	a)What are the four different configuration of differential amplifier? b).	[L1][CO1]	[6M]
	Compare and contrast ideal and practical op-amp?	[L2][CO3]	[6M]
5	a)The op-amp non-inverting amplifier and derive the voltage gain?	[L2][CO3]	[6M]
	b).Explain ac characteristics of op-amp?	[L2][CO3]	[6M]
6	a)Explain dc characteristics of op-amp ? b)define the terms cmrr,	[L2][CO3]	[6M]
	common mode gain, differential mode gain, slew rate	[L1][CO2]	[6M]]
7	a) List out the ideal characteristics of an operational amplifier.	[L4][CO3]	[6M]
	b) An op-amp has a slew rate of $2V/\mu s$. What is the maximum frequency of an	[L4][CO4]	[6M]
	output sinusoid of peak value 5V at which the distortion sets in due to the slew		
0	rate limitation		
8	a) What is voltage follower? What are its features and applications?	[L2][CO1]	[6M]
9	b)Explain briefly i)virtual ground concept b)current mirror circuit	[L2][CO3]	[6M]]
9	a)Draw and explain frequency response of practical op-amp b)Define	[L2][CO3]	[6M]
10	the terms drift, offsetvoltage, psrr, offset current	[L1][CO2]	[6M]
10	a) what is frequency compensation and explain how the frequency response is	[L2][CO3]	[6M]
	varied with respect to Compensation network b)Design an inverting amplifier with gain $A = 10$		[6M]
	inverting amplifier with gain A= 10	[L3][CO4]	LOIAT

UNIT –IV APPLICATIONS OF THE OP-AMP

			1
1	a) Design and explain the operation of inverting summing amplifier.	[L3][CO3]	[6M]
	b)The op-amp non-inverting summing circuit has the following parameters $V_{CC} =$	[L5][CO4]	[6M]
	+15 V, $V_{EE} = -15V$, $R = R_1 = 1 k\Omega$, $R_f = 2 k\Omega$, $V_1 = +2 V$, $V_2 = -3 V$, $V_3 = +4 V$.		
	Determine the output voltage $V_{0.?}$		
2	a)Draw the circuit of a difference amplifier with one op-amp and derive the	[L2][CO2]	[6M]
	expression for voltage gain		L . J
	b) An inverting amplifier with gain 1 have different input voltage: 1.2v,3.2v and	[L5][CO4]	[6M]
	4.2v. Find the output voltage?		r. 1
3	Draw a neat circuit of an integrator circuit. Explain the functioning with the	[L2][CO2]	[12M]
	input-output waveforms and derive the output equation		
4	Draw a neat circuit of an integrator circuit. Explain the functioning with the input-	[L2][CO2]	[12M]
	output waveforms and derive the output equation		
5	a) Design a differentiator to differentiate an input signal that varies in frequency	[L3][CO3]	[6M]
	from 10 Hz to about 1 kHz.		_
	b)Explain sample and hold circuit using op-amp	[L2][CO1]	[6M]
6	a)Drawa neat circuit of astablemultivibrator using op-amp and explain	[L2][CO3]	[6M]
	operation with waveforms		
	b)Define duty cycle, if $T_{on}=0.6$ msec, $T_{off}=0.4$ msec calculate percentage of duty	[L5][CO4]	[6M]
	cycle		
7	a)Drawa neat circuit of monbostablemultivibrator using op-amp and explain	[L2][CO2]	[6M]
	operation with waveforms		
	b)Derive the equation for pulse width of the monostable multivibrator using op-	[L3][CO3]	[6M]
	amp		
8	a)Derive the equation for frequency of oscillation of astablemultivibrator using op-	[L3][CO3]	[6M]
	amp		
	b)Forastablemultivibrator R_2 =10 kohm, R_1 =8.6 kohm, R_f =100 kohm and C=0.01 μ F	[L5][CO4]	[6M]
	calculate frequency of oscilation		
9	a)Drawcircuit diagram of triangular wave generator using op-amp and explain	[L2][CO2]	[6M]
	operation with waveforms		
	b)Discuss the applications of Astablemultivibrator?	[L2][CO1]	[6M]
10	Explain the operation of triangular wave generator with neat circuit diagram and	[L3][CO2]	[12M]
	derive the equation for output frequency		

UNIT –V ACTIVE FILTERS AND CONVERTERS USING OP-AMP

1	a)Define a filter. how filters are classified	[L5][CO2]	[5M]
	b)Draw the circuit diagram and explain first order low pass butter	[L2][CO2]	[7M]
	worth filter		
2	a)Explain various types of filters along with their frequency response	[L3][CO3]	[6M]
	b)Draw the circuit diagram and explain first order high pass butter	[L2][CO2]	[6M]
	worth filter		
3	Design a lowpass filter at a cut-of frequency of 15.9kHz with	[L3][CO3]	[12M]
	passband gain 1.5 and plot frequency response of this circuit		
4	Design a highpass filter at a cut-of frequency of 10kHz with	[L3][CO3]	[12M]
	passband gain 1.5 and plot frequency response of this circuit		
5	a). Draw and explain the weighted resistor DAC	[L2][CO3]	[6M]
	b)An 8-bit Analog to Digital converter has a supply voltage of +12	[L5][CO4]	[6M]
	volts. Calculate:		
	(i)The voltage step size for LSB.		
	(ii) The value of analog input voltage for a digital output of		
	01001011.		
6	a) Draw and explain in detail about R-2R DAC	[L2][CO3]	[6M]
	b).The basic step of a 9 bit DAC is 10.3 mV. If "000000000"	[L5][CO4]	[6M]
	represents 0 V. What output is produced if the input is		
	<u>"1011011111"?</u>		
7	a) Explain about flash type ADC?	[L3][C01]	[6M]
	b) Discuss the parameters specifications of ADC?	[L2][CO1]	[6M]
8	Draw the circuit diagram of Dual Slope ADC and explain its	[L3][CO2]	[12M]
	working with neatsketches		
9	a)Draw the circuit diagram of inverted R-2R DAC and explain its	[L2][CO2]	[6M]
	operation		[6M]
10	b) Discuss the parameters specifications of DAC?	[L2][C01]	[10] []
10	Explain different types of ADC and DAC	[L3][CO1]	[12M]

ared by:

1. CH. MURALIKRISHNAAssistantProfessor/ECE